
Modified Coupon Collector’s Problem

Eric Peña

May 21, 2024

1 Introduction

In probability theory, the coupon collector’s problem refers to the mathematical analysis of collecting every
distinct kind of element when randomly choosing elements with replacement. Two initial questions can be
asked for this problem: (1) If there are k different kinds of coupons, what is the probability that all k
kinds of coupons have been collected after n coupons are collected with replacement? (2) Given k kinds of
coupons, how many coupons do you expect you need to draw with replacement before having drawn each
coupon at least once?

1.1 Connection to the Ship of Theseus

The Ship of Theseus is a ‘thought experiment’ rather than a problem. It’s meant to discuss the concepts of
identity. As a person from deep within the internet (Jeremy Glenesk) puts it:

The experiment is meant to provoke thought, and make you question ideas. It is not meant to
have a clear cut solution, because it’s not actually a problem, but an examination of the way in
which we view identity. And through this, you have to question what criteria we use to classify
identities, as this experiment is really meant to be a simplistic analogue to human identities,
which is obviously significantly more complex. Am I the same person I was 10 years ago, even if
basically every cell in my body has been discarded and replaced? Am I the same person, even if I
hold different beliefs and experiences than the person from a decade ago? What makes a person
who they are? How do we deal with the transference of identity?

This is the point of the Ship of Theseus.

Having said that, we could think of replacing the various components of a system individually and iteratively,
by a random process, and ask the question: how long until the system is completely replaced? This could be
a connection to this philosophical thought experiment.

2 Classic Problem

There are many interesting examples which could be used but let’s stick with the classic scenario of coupon
collection. When explaining the problem to a musician friend of mine, I described it in terms of keys on a

1

piano: what is the expected number of key presses needed (“with replacement”) in order to press all 88 keys
on the piano? There are countless other applications that could be considered.

To keep consistent simple terminology, let’s refer to the kinds of coupons as “kinds” (k) and the number of
collected coupons as “coupons” (n). That is, what is the expected number n needed to collected all k kinds?

2.1 Expectation Value

Let T be a random variable of the number of coupons needed to collected all distinct kinds. Let ti be the
number of coupons needed to collect the ith kind after (i−1) coupons have already been collected. Therefore,

T = t1 + · · ·+ tk. The probability of collecting a new ith kind is pi =
k−(i−1)

k = k−i+1
k .

Keep in mind that for each new kind, the number of coupons we need to collect before reaching a new one
follows a geometric distribution (a distribution over the number of trials needed before seeing the first success
– this can be extended with the negative binomial but that’s beyond our scope).

It’s helpful to know that the expectation value of the geometric distribution is 1
p . So in this case, it’d be

1
pi

= k
k−i+1 . By the Linearity of Expectations:

E(T) = E(t1 + · · ·+ tk)

= E(t1) + · · ·+ E(tk)

=
1

p1
+ · · ·+ 1

pk

=
k

k
+

k

k − 1
+ · · ·+ k

1

= k ·
(
1

1
+

1

2
+ · · ·+ 1

k

)
= k ·Hk

where Hk is the kth Harmonic Number.

Expected Value of Classic Problem

E(T) = k ·Hk ≈ k · log k

2.2 Probabilities

As with most probabilities, we can begin with thinking about a simple ratio

P (A|n, k) = f(n, k)

g(n, k)

where again, n is the number of coupons collected, k is the number of kinds of coupons, and A is the event
that each coupon has been collected at least once.

2

• g(n, k): This is the easier expression and represents the number of ways of distributing n coupons
among k kinds, allowing for the possibility of having one or more kinds without an associated coupon.

• f(n, k): When (n = k), this is simply the number of ways of distributing n distinct coupons among k
distinct kinds (i.e., every kind has a single coupon associated with it), which becomes f(n, k) = n! = k!.
This becomes more complicated when (n > k) and we consider the restriction that no coupons are
left uncollected. To tackle this, we’ll consider how many ways there are to rearrange n into k without
restriction (basically g(n, k)) and then subtract the number of arrangements there are with one kind
uncollected then subtract the number of arrangements there are with two kinds uncollected, and so
on. This is written below as a recurrence relation.

g(n, k) = kn

f(n, k) = kn −
(
k

1

)
· f(n, 1)−

(
k

2

)
· f(n, 2)− · · · −

(
k

k − 1

)
· f(n, k − 1) = kn −

k−1∑
i=1

(
k

i

)
f(n, i)

The more elegant way to solve this problem is to consider the well known Stirling Numbers of the Second
Kind used in the field of combinatorics. The Stirling number of the second kind is the number of ways to
partition a set of n labeled objects into k unlabeled non-empty subsets and is denoted by

{
n
k

}
. This helps us

immensely since this is a key idea in the f(n, k) that we found difficulty with above. The main consideration
for our problem is that the kinds of coupons are actually labeled and we care what kind is collected by which
coupon. In order to correct for this we add an extra k! into our calculation. Therefore:

f(n, k) = k!

{
n

k

}
We have all the pieces we need to get our answer.

P (A|n, k) = f(n, k)

g(n, k)
=

k! ·
{
n
k

}
kn

P (A|n, k) = 1

kn

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

Probability of the Classic Problem

P =
k! ·

{
n
k

}
kn

=
1

kn

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

The final expression comes from the ordinary generating function for Stirling numbers of the second kind.

The expression of the ordinary generating function can be derived but it’s not necessary to the point.

The Mathematica code used to generate the following plot is pretty straight forward

1 f[n_, k_] := Sum[(-1)^i Binomial[k, i] (k - i)^n, {i, 0, k}]

2 g[n_, k_] := k^n

3 Table[Table[{n, f[n, k]/g[n, k]}, {n, 10, 1000, 10}], {k, {80, 100, 120}}]

3

Figure 1: Probability of collecting all k kinds when n coupons (shows three examples)

3 Modified Problem

Rather than collecting all the kinds of the coupons, we may be interested in just a portion of them. For
example, how might this probability profile and expectation value change if we were interested in collecting
half of the various kinds of coupons?

3.1 Expectation Value

Previously, we saw:
k−1∑
n=0

k

k − n
= k ·Hk

where Hk is the kth harmonic number. However, if we only want to measure the “time” or trials needed
collected half the coupons, the sum becomes:

(k/2)−1∑
n=0

k

k − n
= k ·Hk − k ·Hk/2 = k · (Hk −Hk/2)

If we take one of the example from above

E1/2[Tk=100] = k · (Hk −Hk/2) = 69.81721793101974

1 harmonic_number = lambda k: sum ([1/i for i in range(1,k)])

2 100 * (harmonic_number (100) - harmonic_number (50))

4

That is, if there are 100 distinct kinds, the expected number of coupons needed to collect half of them is
about 70. We can make this a key result

Modified Expectation Value
E1/2 = k · (Hk −Hk/2)

3.2 Probability

When I first approached this problem, I thought there could be a couple ways to answer it: (1) the probability
of at least k/2 has been collected and (2) the probability that exactly half of the coupons are collected. You
might imagine that there isn’t a high probability that you have reached k/2 but there is an n that makes it
most probable.

3.2.1 Simulation

To begin, we might want to create a simulation. In python, this becomes a single line function. First, we
can write a Monte Carlo simulation (prob_mc) for collecting at least half of the kinds:

1 prob_mc = lambda n: np.sum((np.array([len(set(np.random.choice(k,n)))/k

for _ in range(m)]) >= p))/m

Another simulation is written (prob_mc_range) for collecting exactly half within some small margin δ. That
is, (f − δ ≤ f ′ ≤ f + δ) for some desired fraction f of the total number of kinds of coupons, k. In the code
below, δ = 0.0001.

1 prob_mc_range = lambda n: np.sum((np.abs(np.array ([len(set(np.random.

choice(k,n)))/k for _ in range(m)]) - p) <= 0.0001))/m

Figure 2: Probability of collecting half of k kinds when n coupons are collected. This shows the probability
of at least half and exactly half within some margin.

5

These two functions were also written in the Wolfram Language:

1 mcProbabilityLimit[k_, n_, p_, m_] :=

2 Count[Table[

3 Length[DeleteDuplicates[RandomInteger [{0, k - 1}, n]]]/k, {i,

4 m}], u_ /; u >= p]/m // N

1 mcProbabilityRange[k_, n_, p_, m_, \[Delta]_] :=

2 Count[Abs[

3 Table[Length[DeleteDuplicates[RandomInteger [{0, k - 1}, n]]]/

4 k, {i, m}] - p], u_ /; u <= \[Delta]]/m // N

3.2.2 Analytical Solution

Ideally, an analytical solution would exist that would allow us to calculate these probabilities easily. The key
is to start with the classic problem from above. There are two main ideas to explore to get to the answer

1. Shrink the problem and pretend there are only k/2 kinds of coupons that exist

2. Find the number of combinations of k/2 occupied and k/2 unoccupied coupon configurations

These two are depicted in the drawing below. (1) tells us that we can simply take the solution from the
classic problem but with fewer coupons. In this case, specifically:

(k/2)! ·
{

n

(k/2)

}
where k = 2j and j ∈ Z (k is even and if it isn’t, use

⌊
k
2

⌋
).

(2) is simply the number of ways to arrange k/2 collected kinds among all the k possible kinds and therefore
becomes: (

k

(k/2)

)
=

k!

(k/2)!(k − k/2)!
=

1

2

k!

(k/2)!
=

1

2
(k)k/2

where (k)k/2 is the falling factorial.

(k)k/2 =

k/2∏
i=1

(k − i+ 1)

Therefore, the probability of collecting half of k coupons given n collected coupons is:

P =
1

kn
· 1
2

k/2∏
i=1

(k − i+ 1) · (k/2)! ·
{

n

(k/2)

}

Probability of Collecting Half of k Coupons

P =
1

kn
· 1
2

k/2∏
i=1

(k − i+ 1) ·
k/2∑
i=0

(−1)i
(
k/2

i

)
(k/2− i)n

6

Figure 3: Drawing that shows the general idea of analytical solution for k/2.

7

Figure 4: Probability of collecting half of k coupons given n elements/coupons collected (where k = 100)

Figure 5: Probability of collecting at least half of k kinds of coupons given n elements/coupons collected
(where k = 100)

8

	Introduction
	Connection to the Ship of Theseus

	Classic Problem
	Expectation Value
	Probabilities

	Modified Problem
	Expectation Value
	Probability
	Simulation
	Analytical Solution

